Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Eur J Med Chem ; 250: 115175, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2237130

ABSTRACT

C-X-C motif chemokine receptor 2 (CXCR2) is G protein-coupled receptor (GPCR) and plays important roles in various inflammatory diseases and cancers, including chronic obstructive pulmonary disease (COPD), atherosclerosis, asthma, and pancreatic cancer. Upregulation of CXCR2 is closely associated with the migration of neutrophils and monocytes. To date, many small-molecule CXCR2 antagonists have entered clinical trials, showing favorable safety and therapeutic effects. Hence, we provide an overview containing the discovery history, protein structure, signaling pathways, biological functions, structure-activity relationships and clinical significance of CXCR2 antagonists in inflammatory diseases and cancers. According to the latest development and recent clinical progress of CXCR2 small molecule antagonists, we speculated that CXCR2 can be used as a biomarker and a new target for diabetes and that CXCR2 antagonists may also attenuate lung injury in coronavirus disease 2019 (COVID-19).


Subject(s)
Asthma , COVID-19 , Pancreatic Neoplasms , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/drug therapy , Neutrophils/metabolism , Asthma/metabolism , Receptors, Interleukin-8B , Pancreatic Neoplasms/metabolism
2.
Phytomedicine ; 104: 154259, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1914900

ABSTRACT

BACKGROUND: Artesunate, as a semi-synthetic artemisinin derivative of sesquiterpene lactone, is widely used in clinical antimalarial treatment due to its endoperoxide group. Recent studies have found that artesunate may have multiple pharmacological effects, indicating its significant therapeutic potential in multiple respiratory diseases. PURPOSE: This review aims to summarize proven and potential therapeutic effects of artesunate in common respiratory disorders. STUDY DESIGN: This review summarizes the pharmacological properties of artesunate and then interprets the function of artesunate in various respiratory diseases in detail, such as bronchial asthma, chronic obstructive pulmonary disease, lung injury, lung cancer, pulmonary fibrosis, coronavirus disease 2019, etc., on different target cells and receptors according to completed and ongoing in silico, in vitro, and in vivo studies (including clinical trials). METHODS: Literature was searched in electronic databases, including Pubmed, Web of Science and CNKI with the primary keywords of 'artesunate', 'pharmacology', 'pharmacokinetics', 'respiratory disorders', 'lung', 'pulmonary', and secondary search terms of 'Artemisia annua L.', 'artemisinin', 'asthma', 'chronic obstructive lung disease', 'lung injury', 'lung cancer', 'pulmonary fibrosis', 'COVID-19' and 'virus' in English and Chinese. All experiments were included. Reviews and irrelevant studies to the therapeutic effects of artesunate on respiratory diseases were excluded. Information was sort out according to study design, subject, intervention, and outcome. RESULTS: Artesunate is promising to treat multiple common respiratory disorders via various mechanisms, such as anti-inflammation, anti-oxidative stress, anti-hyperresponsiveness, anti-proliferation, airway remodeling reverse, induction of cell death, cell cycle arrest, etc. CONCLUSION: Artesunate has great potential to treat various respiratory diseases.


Subject(s)
Antimalarials , Asthma , COVID-19 Drug Treatment , Lung Injury , Pulmonary Disease, Chronic Obstructive , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artesunate/therapeutic use , Asthma/drug therapy , Asthma/metabolism , Fibrosis , Humans , Lung Injury/drug therapy , Pulmonary Disease, Chronic Obstructive/drug therapy
3.
Commun Biol ; 5(1): 415, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1890280

ABSTRACT

IL-25 is implicated in the pathogenesis of viral asthma exacerbations. However, the effect of IL-25 on antiviral immunity has yet to be elucidated. We observed abundant expression and colocalization of IL-25 and IL-25 receptor at the apical surface of uninfected airway epithelial cells and rhinovirus infection increased IL-25 expression. Analysis of immune transcriptome of rhinovirus-infected differentiated asthmatic bronchial epithelial cells (BECs) treated with an anti-IL-25 monoclonal antibody (LNR125) revealed a re-calibrated response defined by increased type I/III IFN and reduced expression of type-2 immune genes CCL26, IL1RL1 and IL-25 receptor. LNR125 treatment also increased type I/III IFN expression by coronavirus infected BECs. Exogenous IL-25 treatment increased viral load with suppressed innate immunity. In vivo LNR125 treatment reduced IL-25/type 2 cytokine expression and increased IFN-ß expression and reduced lung viral load. We define a new immune-regulatory role for IL-25 that directly inhibits virus induced airway epithelial cell innate anti-viral immunity.


Subject(s)
Asthma , Interleukin-17/immunology , Virus Diseases , Antiviral Agents/pharmacology , Asthma/metabolism , Humans , Immunity, Innate , Rhinovirus
4.
Br J Pharmacol ; 179(10): 2208-2222, 2022 05.
Article in English | MEDLINE | ID: covidwho-1794736

ABSTRACT

BACKGROUND AND PURPOSE: Despite the availability of a variety of treatment options, many asthma patients have poorly controlled disease with frequent exacerbations. Proteinase-activated receptor-2 (PAR2) has been identified in preclinical animal models as important to asthma initiation and progression following allergen exposure. Proteinase activation of PAR2 raises intracellular Ca2+ , inducing MAPK and ß-arrestin signalling in the airway, leading to inflammatory and protective effects. We have developed C391, a potent PAR2 antagonist effective in blocking peptidomimetic- and trypsin-induced PAR2 signalling in vitro as well as reducing inflammatory PAR2-associated pain in vivo. We hypothesized that PAR2 antagonism by C391 would attenuate allergen-induced acutely expressed asthma indicators in murine models. EXPERIMENTAL APPROACH: We evaluated the ability of C391 to alter Alternaria alternata-induced PAR2 signalling pathways in vitro using a human airway epithelial cell line that naturally expresses PAR2 (16HBE14o-) and a transfected embryonic cell line (HEK 293). We next evaluated the ability for C391 to reduce A. alternata-induced acutely expressed asthma indicators in vivo in two murine strains. KEY RESULTS: C391 blocked A. alternata-induced, PAR2-dependent Ca2+ and MAPK signalling in 16HBE14o- cells, as well as ß-arrestin recruitment in HEK 293 cells. C391 effectively attenuated A. alternata-induced inflammation, mucus production, mucus cell hyperplasia and airway hyperresponsiveness in acute allergen-challenged murine models. CONCLUSIONS AND IMPLICATIONS: To our best knowledge, this is the first demonstration of pharmacological intervention of PAR2 to reduce allergen-induced asthma indicators in vivo. These data support further development of PAR2 antagonists as potential first-in-class allergic asthma drugs.


Subject(s)
Asthma , Receptor, PAR-2 , Allergens , Alternaria/metabolism , Animals , Asthma/drug therapy , Asthma/metabolism , HEK293 Cells , Humans , Mice
5.
Front Immunol ; 12: 769011, 2021.
Article in English | MEDLINE | ID: covidwho-1650341

ABSTRACT

Asthma patients may increase their susceptibility to SARS-CoV-2 infection and the poor prognosis of coronavirus disease 2019 (COVID-19). However, anti-COVID-19/asthma comorbidity approaches are restricted on condition. Existing evidence indicates that luteolin has antiviral, anti-inflammatory, and immune regulation capabilities. We aimed to evaluate the possibility of luteolin evolving into an ideal drug and explore the underlying molecular mechanisms of luteolin against COVID-19/asthma comorbidity. We used system pharmacology and bioinformatics analysis to assess the physicochemical properties and biological activities of luteolin and further analyze the binding activities, targets, biological functions, and mechanisms of luteolin against COVID-19/asthma comorbidity. We found that luteolin may exert ideal physicochemical properties and bioactivity, and molecular docking analysis confirmed that luteolin performed effective binding activities in COVID-19/asthma comorbidity. Furthermore, a protein-protein interaction network of 538 common targets between drug and disease was constructed and 264 hub targets were obtained. Then, the top 6 hub targets of luteolin against COVID-19/asthma comorbidity were identified, namely, TP53, AKT1, ALB, IL-6, TNF, and VEGFA. Furthermore, the enrichment analysis suggested that luteolin may exert effects on virus defense, regulation of inflammation, cell growth and cell replication, and immune responses, reducing oxidative stress and regulating blood circulation through the Toll-like receptor; MAPK, TNF, AGE/RAGE, EGFR, ErbB, HIF-1, and PI3K-AKT signaling pathways; PD-L1 expression; and PD-1 checkpoint pathway in cancer. The possible "dangerous liaison" between COVID-19 and asthma is still a potential threat to world health. This research is the first to explore whether luteolin could evolve into a drug candidate for COVID-19/asthma comorbidity. This study indicated that luteolin with superior drug likeness and bioactivity has great potential to be used for treating COVID-19/asthma comorbidity, but the predicted results still need to be rigorously verified by experiments.


Subject(s)
Anti-Inflammatory Agents/metabolism , Antioxidants/metabolism , Antiviral Agents/metabolism , Asthma/epidemiology , Asthma/metabolism , COVID-19/epidemiology , COVID-19/metabolism , Immunologic Factors/metabolism , Luteolin/metabolism , SARS-CoV-2/metabolism , Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Antiviral Agents/chemistry , Comorbidity , Computational Biology/methods , Drug Discovery/methods , Humans , Immunologic Factors/chemistry , Interleukin-6/metabolism , Luteolin/chemistry , Molecular Docking Simulation , Protein Interaction Maps/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Serum Albumin, Human/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Tumor Suppressor Protein p53/metabolism , Vascular Endothelial Growth Factor A/metabolism
6.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: covidwho-1625612

ABSTRACT

Repurposing of the anthelminthic drug niclosamide was proposed as an effective treatment for inflammatory airway diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease. Niclosamide may also be effective for the treatment of viral respiratory infections, such as SARS-CoV-2, respiratory syncytial virus, and influenza. While systemic application of niclosamide may lead to unwanted side effects, local administration via aerosol may circumvent these problems, particularly when the drug is encapsulated into small polyethylene glycol (PEG) hydrospheres. In the present study, we examined whether PEG-encapsulated niclosamide inhibits the production of mucus and affects the pro-inflammatory mediator CLCA1 in mouse airways in vivo, while effects on mucociliary clearance were assessed in excised mouse tracheas. The potential of encapsulated niclosamide to inhibit TMEM16A whole-cell Cl- currents and intracellular Ca2+ signalling was assessed in airway epithelial cells in vitro. We achieved encapsulation of niclosamide in PEG-microspheres and PEG-nanospheres (Niclo-spheres). When applied to asthmatic mice via intratracheal instillation, Niclo-spheres strongly attenuated overproduction of mucus, inhibited secretion of the major proinflammatory mediator CLCA1, and improved mucociliary clearance in tracheas ex vivo. These effects were comparable for niclosamide encapsulated in PEG-nanospheres and PEG-microspheres. Niclo-spheres inhibited the Ca2+ activated Cl- channel TMEM16A and attenuated mucus production in CFBE and Calu-3 human airway epithelial cells. Both inhibitory effects were explained by a pronounced inhibition of intracellular Ca2+ signals. The data indicate that poorly dissolvable compounds such as niclosamide can be encapsulated in PEG-microspheres/nanospheres and deposited locally on the airway epithelium as encapsulated drugs, which may be advantageous over systemic application.


Subject(s)
Niclosamide/administration & dosage , Pneumonia/drug therapy , Respiratory System/drug effects , Animals , Asthma/drug therapy , Asthma/metabolism , Asthma/pathology , COVID-19/complications , Cells, Cultured , Disease Models, Animal , Drug Carriers/chemistry , Drug Compounding , Humans , Hydrogels/chemistry , Instillation, Drug , Mice , Microspheres , Mucus/drug effects , Mucus/metabolism , Nanospheres/administration & dosage , Nanospheres/chemistry , Niclosamide/chemistry , Niclosamide/pharmacokinetics , Pneumonia/pathology , Polyethylene Glycols/chemistry , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Respiratory System/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Trachea , COVID-19 Drug Treatment
8.
Int J Mol Sci ; 22(9)2021 May 07.
Article in English | MEDLINE | ID: covidwho-1231495

ABSTRACT

Extracellular vesicles (EVs) are membranous structures, which are secreted by almost every cell type analyzed so far. In addition to their importance for cell-cell communication under physiological conditions, EVs are also released during pathogenesis and mechanistically contribute to this process. Here we summarize their functional relevance in asthma, one of the most common chronic non-communicable diseases. Asthma is a complex persistent inflammatory disorder of the airways characterized by reversible airflow obstruction and, from a long-term perspective, airway remodeling. Overall, mechanistic studies summarized here indicate the importance of different subtypes of EVs and their variable cargoes in the functioning of the pathways underlying asthma, and show some interesting potential for the development of future therapeutic interventions. Association studies in turn demonstrate a good diagnostic potential of EVs in asthma.


Subject(s)
Asthma/metabolism , Extracellular Vesicles/metabolism , Animals , Asthma/genetics , Asthma/microbiology , Asthma/physiopathology , Biomarkers/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Models, Biological
9.
Front Immunol ; 12: 645741, 2021.
Article in English | MEDLINE | ID: covidwho-1190313

ABSTRACT

Particulate matter (PM) induces neutrophilic inflammation and deteriorates the prognosis of diseases such as cardiovascular diseases, cancers, and infections, including COVID-19. Here, we addressed the role of γδ T cells and intestinal microbiome in PM-induced acute neutrophilia. γδ T cells are a heterogeneous population composed of Tγδ1, Tγδ2, Tγδ17, and naïve γδ T cells (TγδN) and commensal bacteria promote local expansion of Tγδ17 cells, particularly in the lung and gut without affecting their Vγ repertoire. Tγδ17 cells are more tissue resident than Tγδ1 cells, while TγδN cells are circulating cells. IL-1R expression in Tγδ17 cells is highest in the lung and they outnumber all the other type 17 cells such as Th17, ILC3, NKT17, and MAIT17 cells. Upon PM exposure, IL-1ß-secreting neutrophils and IL-17-producing Tγδ17 cells attract each other around the airways. Accordingly, PM-induced neutrophilia was significantly relieved in γδ T- or IL-17-deficient and germ-free mice. Collectively, these findings show that the commensal microbiome promotes PM-induced neutrophilia in the lung via Tγδ17 cells.


Subject(s)
Leukocytosis/etiology , Lung/immunology , Microbiota , Neutrophils/pathology , Particulate Matter/adverse effects , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Animals , Asthma/etiology , Asthma/metabolism , Asthma/pathology , Biomarkers , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Fluorescent Antibody Technique , Immunity, Innate , Immunophenotyping , Leukocytosis/metabolism , Leukocytosis/pathology , Lung/metabolism , Lung/pathology , Mice , Neutrophils/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
10.
Allergy ; 76(2): 483-496, 2021 02.
Article in English | MEDLINE | ID: covidwho-1140084

ABSTRACT

BACKGROUND: The impacts of chronic airway diseases on coronavirus disease 2019 (COVID-19) are far from understood. OBJECTIVE: To explore the influence of asthma and chronic obstructive pulmonary disease (COPD) comorbidity on disease expression and outcomes, and the potential underlying mechanisms in COVID-19 patients. METHODS: A total of 961 hospitalized COVID-19 patients with a definite clinical outcome (death or discharge) were retrospectively enrolled. Demographic and clinical information were extracted from the medical records. Lung tissue sections from patients suffering from lung cancer were used for immunohistochemistry study of angiotensin-converting enzyme II (ACE2) expression. BEAS-2B cell line was stimulated with various cytokines. RESULTS: In this cohort, 21 subjects (2.2%) had COPD and 22 (2.3%) had asthma. After adjusting for confounding factors, COPD patients had higher risk of developing severe illness (OR: 23.433; 95% CI 1.525-360.135; P < .01) and acute respiratory distress syndrome (OR: 19.762; 95% CI 1.461-267.369; P = .025) than asthmatics. COPD patients, particularly those with severe COVID-19, had lower counts of CD4+ T and CD8+ T cells and B cells and higher levels of TNF-α, IL-2 receptor, IL-10, IL-8, and IL-6 than asthmatics. COPD patients had increased, whereas asthmatics had decreased ACE2 protein expression in lower airways, compared with that in control subjects without asthma and COPD. IL-4 and IL-13 downregulated, but TNF-α, IL-12, and IL-17A upregulated ACE2 expression in BEAS-2B cells. CONCLUSION: Patients with asthma and COPD likely have different risk of severe COVID-19, which may be associated with different ACE2 expression.


Subject(s)
Asthma/epidemiology , COVID-19/complications , Pulmonary Disease, Chronic Obstructive/epidemiology , Aged , Angiotensin-Converting Enzyme 2/biosynthesis , Asthma/immunology , Asthma/metabolism , COVID-19/immunology , Comorbidity , Female , Humans , Male , Middle Aged , Prevalence , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/metabolism , SARS-CoV-2
11.
Respirology ; 26(5): 442-451, 2021 05.
Article in English | MEDLINE | ID: covidwho-1032419

ABSTRACT

BACKGROUND AND OBJECTIVE: COVID-19 is complicated by acute lung injury, and death in some individuals. It is caused by SARS-CoV-2 that requires the ACE2 receptor and serine proteases to enter AEC. We determined what factors are associated with ACE2 expression particularly in patients with asthma and COPD. METHODS: We obtained lower AEC from 145 people from two independent cohorts, aged 2-89 years, Newcastle (n = 115) and Perth (n = 30), Australia. The Newcastle cohort was enriched with people with asthma (n = 37) and COPD (n = 38). Gene expression for ACE2 and other genes potentially associated with SARS-CoV-2 cell entry was assessed by qPCR, and protein expression was confirmed with immunohistochemistry on endobronchial biopsies and cultured AEC. RESULTS: Increased gene expression of ACE2 was associated with older age (P = 0.03) and male sex (P = 0.03), but not with pack-years smoked. When we compared gene expression between adults with asthma, COPD and healthy controls, mean ACE2 expression was lower in asthma patients (P = 0.01). Gene expression of furin, a protease that facilitates viral endocytosis, was also lower in patients with asthma (P = 0.02), while ADAM-17, a disintegrin that cleaves ACE2 from the surface, was increased (P = 0.02). ACE2 protein expression was also reduced in endobronchial biopsies from asthma patients. CONCLUSION: Increased ACE2 expression occurs in older people and males. Asthma patients have reduced expression. Altered ACE2 expression in the lower airway may be an important factor in virus tropism and may in part explain susceptibility factors and why asthma patients are not over-represented in those with COVID-19 complications.


Subject(s)
Asthma/genetics , COVID-19/genetics , Epithelial Cells/metabolism , Gene Expression Regulation , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2 , Asthma/epidemiology , Asthma/metabolism , Australia/epidemiology , COVID-19/epidemiology , COVID-19/metabolism , Comorbidity , Female , Humans , Male , Middle Aged , Peptidyl-Dipeptidase A/biosynthesis
12.
Int Immunopharmacol ; 91: 107309, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1002653

ABSTRACT

BACKGROUND: COVID-19 is considered the most critical health pandemic of 21st century. Due to extremely high transmission rate, people are more susceptible to viral infection. COVID-19 patients having chronic type-2 asthma prevails a major risk as it may aggravate the disease and morbidities. OBJECTIVE: The present review mainly focuses on correlating the influence of COVID-19 in type-2 asthmatic patients. Besides, it delineates the treatment measures and drugs that can be used to manage mild, moderate, and severe symptoms of COVID-19 in asthmatic patients, thus preventing any exacerbation. METHODS: An in-depth research was carried out from different peer-reviewed articles till September 2020 from several renowned databases like PubMed, Frontier, MEDLINE, and related websites like WHO, CDC, MOHFW, and the information was analysed and written in a simplified manner. RESULTS: The progressive results were quite conflicting as severe cases of COVID-19 shows an increase in the level of several cytokines that can augment inflammation to the bronchial tracts, worsening the asthma attacks. Contradicting to this, certain findings reveal the decrease in the severity of COVID-19 due to the elevation of T-cells in type-2 asthmatic patients, as prominent reduction of T-cell is seen in most of the COVID-19 positive patients. This helps to counteract the balance of immune responses and hence ameliorate the disease progression. CONCLUSION: Asthmatic patients must remain cautious during the COVID-19 pandemic by maintaining all the precautions to stay safe due to limited research data. Future strategies should include a better understanding of asthmatic exacerbation and its relation to COVID-19.


Subject(s)
Asthma/pathology , Asthma/virology , COVID-19/pathology , Animals , Asthma/metabolism , COVID-19/metabolism , Cytokines , Disease Progression , Humans , Pandemics/prevention & control , Risk Factors , SARS-CoV-2/pathogenicity
14.
J Histochem Cytochem ; 68(12): 907-927, 2020 12.
Article in English | MEDLINE | ID: covidwho-637123

ABSTRACT

Inter-α-trypsin inhibitor (IαI) family members are ancient and unique molecules that have evolved over several hundred million years of vertebrate evolution. IαI is a complex containing the proteoglycan bikunin to which heavy chain proteins are covalently attached to the chondroitin sulfate chain. Besides its matrix protective activity through protease inhibitory action, IαI family members interact with extracellular matrix molecules and most notably hyaluronan, inhibit complement, and provide cell regulatory functions. Recent evidence for the diverse roles of the IαI family in both biology and pathology is reviewed and gives insight into their pivotal roles in tissue homeostasis. In addition, the clinical uses of these molecules are explored, such as in the treatment of inflammatory conditions including sepsis and Kawasaki disease, which has recently been associated with severe acute respiratory syndrome coronavirus 2 infection in children.


Subject(s)
Alpha-Globulins/metabolism , Alpha-Globulins/analysis , Animals , Arthritis/metabolism , Arthritis/pathology , Asthma/metabolism , Asthma/pathology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Fibrosis , Humans , Hyaluronic Acid/metabolism , Inflammation/metabolism , Inflammation/pathology , Sepsis/metabolism , Sepsis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL